ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ВАНГАРД СОФТ»

ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ ДЛЯ ДЕЖУРНО-ДИСПЕТЧЕРСКИХ СЛУЖБ

Инструкция по установке

Листов 14

АННОТАЦИЯ

Документ содержит инструкцию по установке программного обеспечения «Интеллектуальная система поддержки принятия решений для дежурнодиспетчерских служб» (далее - программа, ИСППР, приложение).

Программное обеспечение ИСППР предназначено для поддержки принятия решений дежурно-диспетчерских служб в отношении дорожно-транспортных происшествий, пожарной охраны, медицинской помощи, в сфере жилищнокоммунального хозяйства, оказывающих влияние на гражданскую безопасность на территории муниципальных образований.

Программное обеспечение ИСППР может эксплуатироваться на объектах любого масштаба и предназначено для организаций, входящих в территориальную подсистему РСЧС муниципального уровня и обеспечивающих деятельность служб (организаций) в области защиты населения и территорий от чрезвычайных ситуаций, управления силами и средствами, предназначенными и привлекаемыми для предупреждения и ликвидации чрезвычайных ситуаций (происшествий).

СОДЕРЖАНИЕ

1. Загрузка и запуск программы	. 4
1.1 Подготовка к запуску	. 4
1.2 Загрузка и запуск ПО ИСППР	. 4
1.2.1 Загрузка общесистемного ПО	. 4
1.2.2 Скачивание и распаковка архива	. 4
1.2.3 Установка ПО из архива.	. 5
1.2.4 Загрузка общедоступных образов	. 5
1.2.5 Запуск ПО	. 5
1.2.6 Контроль и мониторинг запуска ПО	. 5
2. Конфигурация	. 7
2.1 Настройка параметров запуска контейнеров	. 7
2.2 Настройка конфигурационного файла	. 8
3. ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ И ОПРЕДЕЛЕНИЙ 1	14

1. ЗАГРУЗКА И ЗАПУСК ПРОГРАММЫ

1.1 Подготовка к запуску

Данный раздел описывает развертывание приложения со всеми зависимостями в Docker-контейнерах. Запуск всех контейнеров в нужной конфигурации происходит согласно файлу конфигурации docker-compose.yml. Для подготовки запуска приложения необходимо выполнить следующие шаги:

– обновить серверную операционную систему до последней версии;

– установить программное обеспечение Docker, согласно инструкции, pacnoлoженной по aдресу: https://docs.docker.com/engine/install/;

– установить программное обеспечение Docker Compose, согласно инструкции, расположенной по адресу: https://docs.docker.com/compose/install/.

1.2 Загрузка и запуск ПО ИСППР

Данный раздел описывает загрузку дистрибутива и запуск ПО ИСППР, которые включают в себя следующие шаги, указанные ниже по тексту настоящего документа.

1.2.1 Загрузка общесистемного ПО

Для работы ПО ИСППР необходимо установить и настроить общесистемное ПО PostgreSQL, MinIO, Redis. Они не входят в поставку и могут быть получены из общедоступного хранилища образов. Однако для удобства часть настроенных и протестированных образов доступны на сайте. Скачать и установить их можно командой:

wget -qO- https://www.vanguardsoft.ru/redgift/redgift-minio.img.gz / docker load Оставшиеся образы будут скачены автоматически при первом запуске, см. ниже.

1.2.2 Скачивание и распаковка архива

1. Создайте выделенную папку для приложения, например /opt/isppr, с помощью следующих команд:

mkdir /opt/isppr

cd /opt/isppr

2. Загрузите в эту папку архив isppr.tar.gz по ссылке, полученной от разработчика ПО.

3. Распакуйте скачанный архив с помощью команды:

tar xvzf isppr.tar.gz

1.2.3 Установка ПО из архива.

1. После распаковки архива перейдите в директорию с файлами образов с помощью команды:

cd /opt/isppr

2. Заполните конфигурационный файл .env как указано в разделах ниже.

3. При необходимости произведите настройку файла settings.toml.

4. Запустите команду установки и дождитесь окончания.

for archive in deploy/*.img.gz; do docker load -i \${archive}; done

5. Загруженные образы теперь можно удалить с диска с помощью команды: *rm deploy/*.img.gz*

6. При необходимости скопируйте имеющиеся датафреймы в папку storage/datasets и загрузите подготовленные модели.

1.2.4 Загрузка общедоступных образов

Загрузка общедоступных образов, не входящих в поставку, осуществляется командой:

docker-compose pull

1.2.5 Запуск ПО

1. Запустите Docker Compose для развертывания всех компонентов с помощью следующей команды:

docker-compose up -d

1.2.6 Контроль и мониторинг запуска ПО

1. Убедитесь, что все контейнеры запущены и работают корректно, выполнив

команду:

docker-compose ps

Результат команды должен отражать список запущенных контейнеров (рисунок 1).

Рисунок 1 - Результат команды мониторинга

- 2. Для мониторинга логов каждого из контейнеров можно выполните команду: docker-compose logs -f
- 3. При необходимости остановки контейнеров, используйте команду: docker-compose down
- 4. При необходимости перезапуска контейнеров, используйте команду: docker-compose restart

2. КОНФИГУРАЦИЯ

Данный раздел описывает предварительную конфигурацию файлов для корректного запуска приложения. Настройка приложения осуществляется с помощью env-параметров запуска контейнеров (основные параметры) и/или с помощью конфигурационного файла (основные параметры и тонкие настройки). Приоритет имеют env-параметры.

2.1 Настройка параметров запуска контейнеров

Параметры запуска контейнеров задаются в файле .env. В нем располагаются основные параметры микросервисов, такие как параметры доступа к базам данных, пароли доступа к системе, сетевые порты для доступа к сервисам.

Пример .env файла приведен ниже:

Логин и пароль доступа к веб-интерфейсу Airflow AIRFLOW_WWW_USER_USERNAME='login' AIRFLOW WWW USER PASSWORD='password'

Логин и пароль доступа к моделям
 MINIO_ACCESS_KEY='mlflow_login'
 MINIO_SECRET_KEY='mlflow_password'

Параметры базы данных метаданных и прогноза DB_NAME='airflow'
DB_USER='airflow'
DB_PASSWORD='password'
MLFLOW_DB_NAME='mlflow'

Параметры доступа к базе-источнику происшествий SRC_HOSTNAME='HOSTNAME' SRC_DATABASENAME='DATABASENAME' SRC_USERNAME='USERNAME'

SRC_PASSWORD='PASSWORD'

Параметры доступа к базе-источнику обращений
PG_HOSTNAME='HOSTNAME'
PG_DATABASENAME='DATABASENAME'
PG_PORTNUMBER='PORTNUMBER'
PG_USERNAME='USERNAME'
PG_PASSWORD='PASSWORD'

Сетевые порты для доступа к микросервисам FRONTEND_PORT=8282 AIRFLOW_PORT=8080 MINIO_PORT=9000 MINIO_CONSOLE_PORT=9001 POSTGRES_PORT=5432 MLFLOW_PORT=5000

Не менять! Параметры запуска Airflow в контейнере AIRFLOW_UID=50000 AIRFLOW_HOME='/opt/airflow/'

2.2 Настройка конфигурационного файла

Конфигурационный файл является компонентом хранения статических данных конфигурации микросервисов, в нем располагаются более тонкие настройки процесса загрузки, такие как наименования датафреймов, адресный путь к данным о погоде и прочие служебные данные. Конфигурационный файл settings.toml находится в папке dags контейнера airflow и может быть заменен через механизм монтирования volumes в docker compose.

Пример файла settings.toml приведен ниже.

#Общие настройки

#папка хранения датасетов

DATASET_DIR = "/tf/datasets"

#имя папки airflow (может быть пустым "" если датасеты в DATASET_DIR)

AIRFLOW_DIRECTORY_NAME = "/airflow/"

#папка где хранятся функции

EXT_DIR = "/tf/ext/"

#IР адрес сервера

SERVER_IP = "ip"

#порт веб интерфейса MLflow

 $MLFLOW_PORT = 5000$

#путь к веб интерфейсу MLflow

```
MLFLOW_URI = "@format http://{this.SERVER_IP}:{this.MLFLOW_PORT}"
```

#ключ доступа к MLflow (логин и пароль)

AWS_ACCESS_KEY_ID = "login"

AWS_SECRET_ACCESS_KEY = "password"

#адрес веб интерфейса minio MLFLOW_S3_ENDPOINT_URL = "http://minio:9000/"

```
#данные подключения к БД хранения прогнозов
PREDICTIONS_DATABASE ="databasename"
PREDICTIONS_USER ="user"
PREDICTIONS_PASSWORD ='password'
PREDICTIONS_HOST ="ip базы данных"
PREDICTIONS_PORT ="5432"
```

#константы для прогнозирования кол-ва операторов OPERATORS_DEPLOY_FILENAME = "dataframe_operators_full.csv" OPERATORS_DATASET = "dataframe_operators.csv" OPERATORS_TARGET_COLUMN = "incidents_count" OPERATORS_EXPREIMENT_NAME = "operators_forecast" OPERATORS_DIMENSIONS = 1 OPERATORS_EPOCHS = 3000 OPERATORS_BATCH_SIZE = 10 OPERATORS_FILTERS_VALUE = 64 OPERATORS_N_STEPS = 2 OPERATORS_LAG = 15 OPERATORS_TEST_SIZE = 0.25 OPERATORS_PREDICTIONS_COLUMNS = "predictions_accidents target_value accident_name aggregation_method predictions_date"

OPERATORS_PREDICTIONS_TABLE = "predictions_operators_forecast"

OPERATORS_DATAFRAME_PATH = "@format

{this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.OPERATORS_DA TASET}"

```
OPERATORS_DEPLOY_DATAFRAME_PATH = "@format
```

{this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.OPERATORS_DE PLOY_FILENAME}"

#константы для прогнозирования кол-ва инцидентов

ACCIDENTS_FORECAST_CNT_01_ID = 1080

ACCIDENTS_FORECAST_CNT_02_ID = 1081

ACCIDENTS_FORECAST_CNT_03_ID = 1082

ACCIDENTS_FORECAST_CNT_JKH_ID = 1083

ACCIDENTS_FORECAST_CNT_DTP_ID = 1161

ACCIDENTS_FORECAST_DEPLOY_DATAFRAME =

"accidents_forecast_full.csv"

ACCIDENTS_FORECAST_DATAFRAME_NAME =

"dataframe_accidents_forecast.csv"

ACCIDENTS_FORECAST_ACC_COLUMNS = "cnt_01 cnt_02 cnt_03 cnt_jkh cnt_dtp"

ACCIDENTS_FORECAST_EXPERIMENT_NAME = "accidents_forecast" ACCIDENTS_FORECAST_MERRIDIAN_DATE = "2022-10-17" ACCIDENTS_FORECAST_DATA_TEST_END_DATE = "2023-10-31" ACCIDENTS_FORECAST_APPROXIMATION = 15 ACCIDENTS_FORECAST_DIMENSIONS = 1 ACCIDENTS_FORECAST_EPOCHS = 3000 ACCIDENTS_FORECAST_BATCH_SIZE = 10 ACCIDENTS_FORECAST_BATCH_SIZE = 10 ACCIDENTS_FORECAST_FILTERS_VALUE = 64 ACCIDENTS_FORECAST_N_STEPS = 2 ACCIDENTS_FORECAST_LAG = 15 ACCIDENTS_FORECAST_LAG = 15 ACCIDENTS_FORECAST_TEST_SIZE = 0.25 ACCIDENTS_FORECAST_PREDICTIONS_TABLE =

ACCIDENTS_FORECAST_PREDICTIONS_COLUMNS = "predictions target_value accident_name aggregation_method predictions_date"

ACCIDENTS_FORECAST_DATAFRAME_PATH = "@format {this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.ACCIDENTS_FO RECAST_DATAFRAME_NAME}"

ACCIDENTS_FORECAST_DEPLOY_DATAFRAME_PATH = "@format {this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.ACCIDENTS_FO RECAST_DEPLOY_DATAFRAME}"

#константы аномалий звонков

 $CALLS_ANOMALY_DATAFRAME_NAME = "dataframe_calls_anomaly.csv"$

CALLS_ANOMALY_EXPERIMENT_NAME = "calls_anomaly"

CALLS_ANOMALY_DDS_KRASNODAR = "ЦОВ ДДС-01 ДДС-02 ДДС-03 ДДС-04 ЕДДС"

CALLS_ANOMALY_DDS_SOCHI = "ЕДДС-Сочи ДДС-01-Сочи ДДС-02-Сочи ДДС-03-Сочи ДДС-04-Сочи"

CALLS_ANOMALY_CONTAMINATION = 0.25

CALLS_ANOMALY_PREDICTIONS_TABLE = "predictions_calls_anomaly" CALLS_ANOMALY_DATAFRAME_PATH = "@format {this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.CALLS_ANOMA LY_DATAFRAME_NAME}"

#константы кластеризации

INCIDENT_CLUSTERING_DATAFRAME_KRASNODAR =

"dataframe_incident_clustering_krasnodar.csv"

INCIDENT_CLUSTERING_DATAFRAME_SOCHI =

"dataframe_incident_clustering_sochi.csv"

INCIDENT_CLUSTERING_EXPREIMENT_NAME = "incident_clustering"

INCIDENT_CLUSTERING_PREDICTIONS_TABLE =

"predictions_incident_clustering"

INCIDENT_CLUSTERING_DATAFRAME_COLUMNS = "ic

emergency_category_id region_id emergency_category date_received"

INCIDENT_CLUSTERING_DATAFRAME_KRASNODAR_PATH = "@format {this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.INCIDENT_CLUS TERING_DATAFRAME_KRASNODAR}"

INCIDENT_CLUSTERING_DATAFRAME_SOCHI_PATH = "@format {this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.INCIDENT_CLUS TERING_DATAFRAME_SOCHI}"

INCIDENT_CLUSTERING_KRASNODAR_COORDINATES = "39.0912 45.0264"

INCIDENT_CLUSTERING_SOCHI_COORDINATES = "39.6209 43.6667" INCIDENT_CLUSTERING_CLUSTER_COUNT = 9

#константы аномалий обработки заявок операторами STATUSES_ANOMALY_DATAFRAME = "dataframe_statuses_anomaly.csv" STATUSES_ANOMALY_EXPRIMENT_NAME = "statuses_anomaly" STATUSES_ANOMALY_CITYES = "Сочи Краснодар" STATUSES_ANOMALY_CONTAMINATION = 0.15 STATUSES_ANOMALY_PREDICTIONS_TABLE =

"predictions_statuses_anomaly"

STATUSES_ANOMALY_DATAFRAME_PATH = "@format {this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.STATUSES_ANO MALY_DATAFRAME}"

#константы погодного датасета

WEATHER_DATAFRAME = "dataframe_weather.csv"

WEATHER_LINK = "ссылка на сервис с которого получаются погодные данные"

WEATHER_DATAFRAME_PATH = "@format

{this.DATASET_DIR}{this.AIRFLOW_DIRECTORY_NAME}{this.WEATHER_DAT AFRAME}"

3. ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ И ОПРЕДЕЛЕНИЙ

ДДС – Дежур	но-диспетчерская служба
-------------	-------------------------

ИСППР –	Интеллектуальная система поддержки принятия решений
	для дежурно-диспетчерских служб
ПО –	Программное обеспечение
СУБД –	Система управления базами данных
БД —	База данных
ДДС-01 —	Дежурно-диспетчерская служба пожарной охраны
ДДС-02 —	Дежурно-диспетчерская служба полиции
ДДС-03 –	Дежурно-диспетчерская служба скорой медицинской
	помощи
ДДС-04 —	Дежурно-диспетчерская служба газа
ЦОВ-112 –	Центр обработки вызовов Системы-112
ЕДДС —	Единая дежурно-диспетчерская служба
РСЧС –	Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций